Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

نویسندگان

  • Ine Vandersmissen
  • Sander Craps
  • Maarten Depypere
  • Giulia Coppiello
  • Nick van Gastel
  • Frederik Maes
  • Geert Carmeliet
  • Jan Schrooten
  • Elizabeth A.V. Jones
  • Lieve Umans
  • Roland Devlieger
  • Michel Koole
  • Olivier Gheysens
  • An Zwijsen
  • Xabier L. Aranguren
  • Aernout Luttun
چکیده

Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein-SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.

The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external...

متن کامل

IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs.

Successful therapeutic angiogenesis for the treatment of ischemic disorders relies on selection of optimal proangiogenic or arteriogenic agents that are able to promote establishment of functional collateral networks. Here, we show that IL-20, a pleiotropic inflammatory cytokine, displays an imperative effect on vascular remodeling. Stimulation of both large and microvascular endothelial cells ...

متن کامل

Effects of Cell Grafting on Coronary Remodeling After Myocardial Infarction

BACKGROUND With recent advances in therapeutic applications of stem cells, cell engraftment has become a promising therapy for replacing injured myocardium after infarction. The survival and function of injected cells, however, will depend on the efficient vascularization of the new tissue. Here we describe the arteriogenic remodeling of the coronary vessels that supports vascularization of eng...

متن کامل

Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2015